CHAPTER-1
 FUNDAMENTAL AND ERROR ANALYSIS

2. Ans: (a)

Sol: Probable Value $=\frac{3.12+3.15+2.97+3.10+2.99}{5}$
(Or)
(Avg Value)

$$
=3.066
$$

3. Ans: (b)

Sol: Req $=\frac{100 \times 10^{3} \times 10^{6}}{10^{5}+10^{6}}=90.909 \mathrm{~K} \Omega$
$\mathrm{I}=\frac{5}{90.909 \times 10^{3}}=5.5 \times 10^{-5}$
$\mathrm{V}=\mathrm{IR}=90.905 \times 10^{3} \times 5.5 \times 10^{-5}=4.99 \mathrm{~V}$
Total Reading $=5+4.99=9.99 \cong 10 \mathrm{~V}$

04. Ans: (b)

Sol: 0.125% of the span
$\mathrm{T}_{1}=400^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=1000^{\circ} \mathrm{C}$
Span $=T_{2}-T_{1}=1000-400=600$
0.125% of the span $=\frac{0.125}{100} \times 600=0.75^{\circ} \mathrm{C}$
05. Ans: (c)

Sol: The mean value of the voltage for every month shows a standard deviation of 0.1 mv
The voltage of a standard cell is monitored daily over a period of one year.
One year means 12 months
$\mathrm{n}=12$

$$
\begin{aligned}
\Rightarrow \text { standard value } \sigma & =\sqrt{\frac{\sum_{\mathrm{T}=1}^{\mathrm{n}} \mathrm{~d}_{\mathrm{i}}{ }^{2}}{\mathrm{n}}} \\
& =\sqrt{\frac{\left(10^{-1}\right)^{2}}{12}}=\frac{10^{-1}}{\sqrt{12}}=\frac{0.1}{\sqrt{12}}
\end{aligned}
$$

07. Ans: (a)

Sol: Span $=\mathrm{T}_{2}-\mathrm{T}_{1}=200^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}=50^{\circ} \mathrm{c}$
$\pm 0.25 \%$ of the span $=\frac{ \pm 0.25 \times 50}{100} \times 100= \pm 0.125 \%$

08. Ans: (b)

Sol: $\mathrm{S}_{\mathrm{B}}=\frac{\text { change in deflection }}{\text { unit change in voltage or Resis tan } \mathrm{e}}=\frac{\Delta \theta}{(\Delta \mathrm{R} / \mathrm{R})}$
$=\frac{3 \times 10^{-3}}{7}=0.4285 \mathrm{~mm} / \Omega$
Deflection factor $=\frac{1}{\mathrm{~S}_{\mathrm{B}}}=\frac{1}{\frac{3 \times 10^{-3}}{7}}=2.33 \Omega / \mathrm{mm}$

11. Ans: (b)

Sol: $\mathrm{S}_{\mathrm{B}}=\frac{\text { change in deflection }}{\text { unit change in voltage or Re sistane }}=\mathrm{e} / 10$
$\mathrm{e}=\mathrm{v}_{\mathrm{d}}-\mathrm{v}_{\mathrm{a}}$
$\mathrm{Va}=100(1000 / 1000+1000)=50$
$\mathrm{Vd}=100(1010 / 1010+1000)=50.25$
$\mathrm{e}=50.25-50=0.25 \mathrm{v}$
$\mathrm{S}_{\mathrm{B}}=25 \mathrm{mv} / \Omega$

12. Ans: (b)

Sol: Power $\mathrm{P}= \pm 1.5 \%$
$\mathrm{I}= \pm 1.0 \%$
$\mathrm{R}=\frac{\mathrm{P}}{\mathrm{I}^{2}}=\frac{ \pm 1.5 \%}{(\pm 1.0) \% \times(\pm 1.0) \%}$
In case of multiplication $\pm \%$ values are added
$=\frac{ \pm 1.5 \%}{ \pm 2 \%}= \pm 3.5 \%$
13. Ans: (c)

Sol: $(0-10 \mathrm{~A})$ Ammeter GAE $=1 \%$ of full scale deflection
GAE $=1 \times \frac{10}{100}=0.1$
The reading is 2.5 A so the Limiting error will be
$2.5 \times \frac{\mathrm{x}}{100}=0.1$
$\mathrm{x}=4 \%$
15. Ans: (b)

Sol: Measured value $=127.5 \mathrm{v} \quad$ true value $=127.43 \mathrm{v}$
$\%$ state error $=\frac{\text { Measure value }- \text { true value }}{\text { true value }}$
$=\frac{127.5-127.43}{127.43} \times 100$
Static error $=$ measured value - true value
$=127.5-127.43=0.07$
Correction factor $=(-\varepsilon)$

$$
=-0.07
$$

16. Ans: (b)

Sol: Measured value $=95.45^{\circ} \mathrm{c}$
Static correction $=(-\varepsilon)=-0.08^{\circ} \mathrm{c}$
Error $=$ Measured value - true value
$0.08^{0} \mathrm{c}=95.45^{\circ} \mathrm{c}-$ true value
Tree value $=95.45^{\circ} \mathrm{c}-0.08^{\circ} \mathrm{c}=95.37^{\circ} \mathrm{C}$
17. Ans: (c)

Sol: $\mathrm{R}_{1}=72.3 \Omega$
$\mathrm{R}_{2}=2.73 \Omega$
$\mathrm{R}_{3}=0.612 \Omega$
Uncertainty of one unit means, the error in last digits, so we can neglect
$\mathrm{R}_{1}=72.3 \Omega \quad \mathrm{R}_{2}=2.7 \Omega \quad \mathrm{R}_{3}=0.6 \Omega$
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=72.3+2.7+0.6$

$$
=75.6 \Omega
$$

18. Ans: (a)

Sol: $\mathrm{R}_{1}=28.7 \Omega \quad \mathrm{R}_{2}=3.624 \Omega$ Neglect last digits
$\mathrm{R}_{1}=28.7 \Omega \quad \mathrm{R}_{2}=3.6$
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}=28.7+3.6=32.3 \Omega$
19. Ans: (b)

Sol: No. of divisions $=100$
Full scale reading $=200 \mathrm{v}$
Resolution $=\frac{\text { Full scale reading }}{\text { No. of divisions }}=\frac{200}{100}=2$
But he has given $\frac{1}{10}$ of scale division
Resolution $=\frac{1}{10} \times 2=0.2 \mathrm{v}$
20. Ans: (c)

Sol: $\mathrm{C}=1 \mu \mathrm{~F} \pm 5 \%$
The limits between the capacitance value
$\mathrm{C}_{1}=1 \mu \mathrm{~F}+5 \% \mathrm{C}_{2}=1 \mu \mathrm{~F}-5 \%$
$\mathrm{C}_{1}=1.05 \mu \mathrm{~F} \quad \mathrm{C}_{2}=0.95 \mu \mathrm{~F}$
21. Ans: (c)

Sol: Range ($0-150 \mathrm{v}) \quad$ GAE $=1 \%$ full scale reaching
$\operatorname{GAE}=\frac{1}{100} \times 150=1.5$
The voltage measured value $=75 \mathrm{v}$. So the limiting error

$$
\begin{aligned}
& =75 \times \frac{x}{100}=1.5 \\
x & =2 \%
\end{aligned}
$$

22. Ans: (c)

Sol: Range of the Ammeter 0 - 10 A
GAE $=1 \%$ of full scale reading
$\mathrm{GAE}=1 \times \frac{10}{100}=0.1$
The measured value $=2.5 \mathrm{~A}$
L.E $=2.5 \times \frac{\mathrm{x}}{100}=0.1$

$$
x=4 \%
$$

29. Ans: (a)

Sol: A pressure gauge is calibrated $\left(0-50 \mathrm{KN} / \mathrm{m}^{2}\right)$
Total no. of division $=100$
$\frac{1}{5}$ th of scale division
Resolution $=\frac{\text { Full scale reading }}{\text { No. of divisions }}=\frac{50}{100}=0.5$
$\frac{1}{5}$ th of scale division $=\frac{1}{5} \times 0.5=0.1 \mathrm{kN} / \mathrm{m}^{2}$

Two Marks Questions

30. Ans: (b)

Sol: GAE $= \pm 3 \%$ of full scale
Range $=(0-300 \mathrm{v})$
GAE $=\frac{3}{100} \times 300= \pm 9$
The reading 200 v
One reading $=200+9=209 \mathrm{v}$
Another reading $=200-9=191 \mathrm{v}$
31. Ans: (d)

Sol: (i) $\mathrm{w}_{1}=100 \mathrm{w}$ GAE $= \pm 1 \%$ of w_{1},

$$
\mathrm{GAE}=\frac{1}{100} \times 100= \pm 1
$$

(ii) $\mathrm{w}_{2}=-50 \mathrm{w} \quad$ GAE $= \pm 0.5 \%$ of w_{2}

$$
\text { GAE }=\frac{ \pm 0.5}{100} \times 100= \pm 0.5
$$

Total power $=\mathrm{w}_{1}+\mathrm{w}_{2}$

$$
\begin{aligned}
& =100 \pm 1-50 \pm 0.5 \\
& =50 \pm 1.5
\end{aligned}
$$

$50 \mathrm{x} \frac{\mathrm{x}}{100}=1.5$
LE $x=3 \%$
36. Ans: (a)

Sol: $\mathrm{R}_{1}=37 \pm 5 \% \quad \mathrm{R}_{2}=75 \pm 5 \% \quad \mathrm{R}_{3}=50 \pm 5 \%$
Three Resistance are connected in series
Req $=R_{1}+R_{2}+R_{3}$
$\mathrm{R}_{1}=37 \pm 5 \% \Rightarrow 37 \times \frac{5}{100}=\frac{185}{100}=1.85$
$\mathrm{R}_{1}=37 \pm 1.85$
$\mathrm{R}_{2}=75 \pm 5 \% \Rightarrow 75 \times \frac{5}{100}=3.75$
$\mathrm{R}_{2}=75 \pm 3.75$
$R_{3}=50 \pm 5 \%$
$=50 \times \frac{5}{100}=2.5$
$\mathrm{R}_{3} 50 \pm 2.5$
$R e q=R_{1}+R_{2}+\mathrm{R}_{3}=37+1.85+75 \pm 3.75+50 \pm 2.5$
$=162 \pm 8.1$
$=162 \times \frac{x}{100}=8.1 \quad X=5 \%$
37. Ans: (c)

Sol: $\mathrm{R}_{1}=100 \pm 5 \Omega \mathrm{R}_{2}=150 \pm 15 \Omega$
$R e q=R_{1}+R_{2}=100 \pm 5+150 \pm 15$

$$
=250 \pm 20
$$

But he asking standard deviations on

$$
\begin{aligned}
& =\sqrt{\frac{\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}}{\mathrm{n}-1}} \\
& =\sqrt{\frac{15^{2}+5^{2}}{2-1}}=15.8 \Omega \\
\text { Ans } & =250 \pm 15.8
\end{aligned}
$$

38. Ans: (a)

Sol: Range of voltmeter (0-300v)
GA error $= \pm 2 \%$ full scale deflection
$\mathrm{GAE}= \pm 2 \times \frac{300}{100}= \pm 6$
The reading 30 v
One Reading $=30+6=36 \mathrm{v}$
Another Reading $=30-6=24 v$
39. Ans: (d)

Sol: Voltage measurement $= \pm 2 \%$
Current $= \pm 3 \% \quad$ Incase of multiplication $\pm \%$ will be added
Power $=\mathrm{VI}= \pm 3 \% \times \pm 2 \%$

$$
= \pm 5 \%
$$

40. Ans: (b)

Sol: $\mathrm{I}= \pm 1.5 \% \quad \mathrm{R}= \pm 0.5 \%$

$$
\begin{aligned}
\mathrm{P} & =\mathrm{I}^{2} \mathrm{R}=(\pm 1.5 \% \times \pm 1.5 \% * 0.5 \% \\
& = \pm 3.5 \%
\end{aligned}
$$

Previous IES questions

7. Ans: (b)

Sol: Measured value $=100 \mu \mathrm{~F}$ true value $=110 \mu \mathrm{~F}$
Relative error $= \pm \frac{\text { Measured value }- \text { true value }}{\text { true value }} \times 100=\frac{100-110}{110} \times 100=9.09 \%$
08. Ans: (b)

Sol: Voltmeter Range (0-20V)
(GAE) Accuracy $= \pm 1 \%$ fsd
GAE $=20 \times \frac{1}{100}=0.2$
Reading $2 \times \frac{\mathrm{x}}{100}=0.1$ Limiting error $\mathrm{x}= \pm 10 \%$
If it Reads $5 \mathrm{~V} \times \frac{\mathrm{x}}{100}=0.2 \quad \mathrm{x}= \pm 4 \%$
Reading $10 \times \frac{x}{100}=0.2 \quad x= \pm 2 \%$

$$
20 \times \frac{x}{100}=0.2 \Rightarrow x= \pm 1 \%
$$

13. Ans: (d)

Sol: Range of ammeter ($0-10 \mathrm{~mA}$)
GAE $= \pm 2 \%$ of full scale

$$
= \pm 2 \times \frac{10}{100}=0.2
$$

L.E Reading $5 \mathrm{~mA} \Rightarrow 5 \times \frac{\mathrm{x}}{100}=0.2$

$$
X=\frac{0.2 \times 100}{5}= \pm 4 \%
$$

24. Ans: (a)

Sol: Readings $117.02 \mathrm{~mA}, 117.11 \mathrm{~mA}, 117.08$ \& 117.03
Range of error means
Avg value $=\frac{117.02+117.11+117.08+117.03}{4}$
$\mathrm{Iw}=117.06 \quad \mathrm{I}_{\mathrm{Min}}=117.02$
$\mathrm{I}_{\text {max }}=117.11$
Error $=\frac{ \pm\left(\mathrm{I}_{\text {max }}-\mathrm{I}_{\mathrm{av}}\right)+\left(\mathrm{I}_{\mathrm{av}}-\mathrm{I}_{\text {min }}\right)}{2}$

$$
=\frac{(117.11-117.06)+(117.06-117.02)}{2}=\frac{ \pm 0.05+0.04}{2}= \pm 0.045
$$

26. Ans: (d)

Sol: Range of voltmeter ($0-100 \mathrm{~V}$)
GAE $= \pm 1 \%$ of full scale

$$
= \pm 1 \times \frac{100}{100}= \pm 1
$$

Reading Measured value $=5 \mathrm{~V}$
LE $\quad \Rightarrow 5 \times \frac{\mathrm{x}}{100}= \pm 1 \quad(\because$ LE $=$ Limiting Error $)$
LE $x=\frac{100}{5}= \pm 20 \%$

Previous Gate questions

7. Ans: (d)

Sol: Voltage value $5.9 \mathrm{~V}, 5.7 \mathrm{~V}, 6.1 \mathrm{~V}$
Standard deviation $=\sqrt{\frac{\mathrm{d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}+\mathrm{d}_{3}{ }^{2}}{\mathrm{n}}}$
Average value $5.9=\frac{5.9+5.7+6.1}{3}$

$$
\mathrm{d}_{1}=5.9-5.9=0 \quad \mathrm{~d}_{2}=5.9-5.7=0.2
$$

$\mathrm{d}_{3}=6.1-5.9=0.2$

$$
=\sqrt{\frac{(0.2)^{2}+(0.2)^{2}}{2}}=\sqrt{\frac{0.04+0.04}{2}}=0.2
$$

Two Marks Questions:

8. Ans: (b)

Current (A)	0	5	10	15	20	25
Ammeter reading A	1	4	12	14	22	28

Full scale reading
(0-30V)
Full scale reading $=30 \mathrm{~V}$
Error $=28-25=3 V$, it is 10% of full scale reading.

